
Measurement of Improved Performance for

Incompressible Navier-Stokes Example

P. Colella
D. F. Martin
N. D. Keen

Applied Numerical Algorithms Group
NERSC Division

Lawrence Berkeley National Laboratory
Berkeley, CA

April 30, 2003



In a previous report, the performance of the baseline AMR Navier-Stokes code was
documented. A description of the problem was presented including the input and tech-
niques used to measure wall-clock times along with serial and parallel performance results
of the baseline code on the ’halem’ machine at GSFC. We also measured the approximate
peak memory usage for the two benchmark problems in serial.
In this report, we present timing measurements that show an improvement in per-

formance after various code optimizations. There were errors discovered in the original
baseline code, which resulted in changes to the code. These changes were propagated
to the baseline code and new performance results were generated from this modified
baseline code. We also provide a measurement for quantifying the differences between
the solutions of the modified baseline code and the current code. The current code and
the modified baseline code are provided with this report and are available on the web at
http://davis.lbl.gov/NASA.
The summary of the outcome of our performance improvements is as follows. We

reduced the wall clock time by factors ranging from 1.76 to 7.93 (tables 4 and 7), de-
pending on the size of the problem and the number of processors. The largest speedups
correspond to the largest problems. Also, these are fixed-size speedups, with all of the
performance improvements coming from algorithm and code improvements, as opposed
to increasing the number of processors. We were also able to reduce the memory required,
but by a smaller amount, i.e., 5%-20%. However, memory appears not to be a constrain-
ing resource for this class of algorithms. Because of the speedups obtained here, and the
fact that the performance improvements increased with the problem size and number of
processors, we feel that we have met the requirements of Milestone F.

Baseline Code Changes and New Baseline Results

An error was discovered in the tagging criteria which resulted in incomplete tagging for
refinement. When this error was corrected, more cells were tagged for refinement, which
changed the solution (making it more accurate) and increased the work for the benchmark
problems both in wall-clock time and peak memory usage. Also, an error was found in
the reporting of certain summary values of the solution data in parallel runs; this error did
not affect the solution, simply the value which was written incorrectly. We modified the
baseline code to include the fixes for these errors.
We found that the code produced slightly different results when running in parallel

depending on the load balance. To ensure that the code computes the exact same results
regardless of load balance we modified the dot product function to gather and sort values
before computing. We propagated this change to the modified baseline code. This change
caused a slight performance degradation.
The only other modification to the baseline code concerns the diagnostic output printed

to the screen. We added wall-clock and maximum memory usage results for three different
stages of the code: setup, running all timesteps, and concluding. We added more precision

1



to certain values in the output. We added another diagnostic value which was the integral
of kinetic energy (and the code required to compute it). These changes make it easier to
compare performance results for the baseline and the current code as well as to quantify
any changes in the solution.
A larger benchmark input was added with a size of 96x96x144 and a vorticity tagging

factor of 0.00166666. Table 1 shows the three sizes of benchmark problems used including
the respective vorticity tagging factor and total number of points updated for the run. In
all of the benchmark runs, four timesteps are completed.

Problem size Vorticity Tagging Number Points
Factor Updated for all Levels

32x32x48 0.0050 41517056
64x64x96 0.0025 226050048
96x96x144 0.00167 635633664

Table 1: Baseline Problem Data

Table 2 shows the re-computed performance results of the baseline code after modifi-
cations. We also include the maximum memory used over the entire run and all processors.
This memory measurement is made using the system call getrusage() on the halem ma-
chine. This system call retrieves information about resources used by the current process
such as the maximum resident set size. In the previous report, the memory reported was
an estimate using our Linux workstations. We believe the memory measurements in these
tables to be more accurate.

Prob size Num Max Memory AMR Run rate1 rate2
Procs MB time (sec) N/t N/t*P

32x32x48 1 458 5425 7653 7653
32x32x48 4 156 1601 25932 6483
32x32x48 8 95 963 43112 5389
32x32x48 16 65 682 60875 3805
32x32x48 32 55 466 89092 2784
64x64x96 8 378 6206 36424 4553
64x64x96 16 205 3982 56768 3548
64x64x96 32 124 3029 74629 2332
64x64x96 64 86 2882 78435 1226
96x96x144 32 301 14438 44025 1376
96x96x144 64 171 13236 48023 750

Table 2: Baseline (re-computed) Results (with new tagging method)

The AMR run time is the measured wall-clock time to compute 4 timesteps and does

2



not include setup overhead or I/O at the end of the run. The rate1 column is the total
number of points updated divided by the wall-clock time and rate2 is rate1 divided by
the number of processors used.
In table 3 we show unscaled speedup results for the only benchmark problem small

enough to run on a single processor. All serial measurements are performed with code
compiled without MPI.

Num Unscaled
Procs Speedup
4 3.4
8 5.6
16 8.0
32 11.6

Table 3: Baseline Unscaled Speedups for 32x32x48 benchmark

Summary of Performance Optimizations

Elliptic Solver

An expensive copy operation was simplified. Modifications were made to reduce the
work performed when the residual becomes small. The single most expensive function in
the elliptic solver is the Gauss-Siedel with Red-Black ordering (GSRB) smoothing which
is implemented in fortran. We unrolled a loop over dimension which improved serial
performance without modifying the solution.

Load Balance Algorithm

The load balance algorithm was improved by implementing a modified knapsack algorithm,
replacing the round robin technique previously used to assign boxes to processors. We
added an additional phase to the algorithm which exchanges equally sized boxes between
processors to improve data locality. We also improved the efficiency of the balancing for
problems in which the number of boxes to be distributed among processors was approxi-
mately equal to the number of processors.

Serial Optimizations

An expensive function in the coarse-fine interpolation function was identified and most
of this function was converted into a simple fortran routine which greatly improved the
serial performance. A consistency test was found to be expensive and was modified to

3



be performed only when the code is compiled with the debug option. Redundant work
performed in the norm function was removed.
The Copier class does some initial set up to aid in certain types of data copying

tasks. Improvements were made to the creation of Copier classes by implementing an
alternative algorithm for determining box intersection details. This change vastly improved
performance for larger problem sizes. We also improved the performance of creating
Copiers for periodic problems.
The definition step for the class which enforces conservative coarse-fine matching

conditions was sped up by removing work done in a critical inner loop.
The maximum box size (maxboxsize) is an input parameter which controls the maxi-

mum permissible box size and can be changed without altering the solution (except small
changes due to accumulation of round-off errors). By changing the maxboxsize used
in the calculations from 32 to 48 on all AMR levels except for the base level, we see a
significant improvement in serial performance.
We reduced the peak memory usage by rearranging the location of data allocation in

functions that were found to operate at or near the maximum memory of code execution.

Parallel Optimizations

A redundant parallel barrier was removed allowing for improved parallel performance espe-
cially as the number of processors increases. Several unnecessary parallel data exchanges
were removed, which did not result in a noticeable improvement in performance.
We found a bug in the parallel data exchanges that was very slowly leaking memory.

Fixing the bug provides slightly improved performance, reduces the peak memory usage,
and does not alter the solution. This bug has only a small effect on the benchmark
problems used in this work because all of the problems run for only four time steps.

Current Results after Improving Code Performance

The following tables show the performance results of the current code. Table 4 shows
results with the maxboxsize equal to 32. The table includes a column that shows the
improvement over the baseline code measurements. Table 5 shows the unscaled speedup
for the 32x32x48 problem with maxboxsize=32.
When we increase the maximum permissible box size to 48, the grids slightly changed

during the calculation and the total number of points updated increased slightly for the
largest benchmark problem. Table 6 shows the number of points updated for each bench-
mark problem. Table 7 shows results with the maxboxsize=48. The table includes
a column that shows the improvement over the baseline code measurements. Table 8
shows the unscaled speedup for the 32x32x48 problem with maxboxsize=48. Figure
1 plots the rate2 computed measurements and provides a scaling comparison between
baseline code performance and the current code performance (with maxboxsize=48).

4



Prob size Num Max Memory AMR Run improvement rate1 rate2
Procs MB time (sec) over baseline N/t N/t*P

32x32x48 1 432 3088 1.76 13445 13445
32x32x48 4 138 864 1.85 48052 12013
32x32x48 8 83 462 2.08 89864 11233
32x32x48 16 55 283 2.41 146703 9169
32x32x48 32 47 229 2.03 181297 5666
64x64x96 8 325 2824 2.20 80046 10006
64x64x96 16 176 1514 2.63 149307 9332
64x64x96 32 111 930 3.26 243065 7596
64x64x96 64 76 712 4.05 317486 4961
96x96x144 32 253 2722 5.30 233517 7297
96x96x144 64 159 1823 7.26 348675 5448

Table 4: Current Performance Results with maxboxsize=32

Num Unscaled
Procs Speedup
4 3.6
8 6.7
16 10.9
32 13.5

Table 5: Unscaled Parallel Speedup with maxboxsize=32

Perfect scaling would correspond to a horizontal line connecting all of the points. From
this graph, it is clear that we have improved the scaling behavior of the method, as well
as the absolute performance.

Prob size Vort Tag N Points
Factor Updated

32x32x48 0.0050 41517056
64x64x96 0.0025 226050048
96x96x144 0.00167 635658240

Table 6: Problem Data with maxboxsize=48

All measurements were made on halem using the current batch system which does
not guarantee dedicated use of the network between nodes. We believe that there is
the potential for bandwidth competition between batch jobs which can cause inconsistent
timing measurements. We found it difficult to repeat wall-clock timing results on halem,

5



1 4 16 64
Number of Processors

1000

10000

ra
te

2:
  U

pd
at

ed
 P

oi
nt

s/
(T

im
e 

* 
N

 P
ro

cs
)

baseline 32x32x48
baseline 64x64x96
baseline 96x96x144
current 32x32x48
current 64x64x96
current 96x96x144

Figure 1: Scaling Results

6



Prob size Num Max Memory AMR Run improvement rate1 rate2
Procs MB time (sec) over baseline N/t N/t*P

32x32x48 1 421 2817 1.92 14738 14738
32x32x48 4 143 822 1.95 50507 12627
32x32x48 8 88 459 2.10 90451 11306
32x32x48 16 60 287 2.34 144659 9041
32x32x48 32 51 229 2.03 181297 5666
64x64x96 8 324 2610 2.34 86609 10826
64x64x96 16 176 1394 2.86 162159 10135
64x64x96 32 112 894 3.39 252852 7902
64x64x96 64 92 647 4.45 349382 5459
96x96x144 32 262 2479 5.82 256417 8013
96x96x144 64 166 1670 7.93 380634 5947

Table 7: Current Performance Results with maxboxsize=48

Num Unscaled
Procs Speedup
4 3.4
8 6.1
16 9.8
32 12.3

Table 8: Unscaled Parallel Speedup with maxboxsize=48

especially as the problem increased in size, total run time, and number of processors used.
All of the timing measurements reported in this document are the minimum value of four
separate measurements using the exact same code. Variations from this minimum over
the four sets of runs were as high as 35%.

Quantifying Solution Differences from Performance Im-

provements

A measure of the changes in the solutions due to code modifications can be seen in Tables
9 and 10. Values in the table are relative differences between computed values.
In Tables 9 and 10, the maximum vorticity and integral of the kinetic energy are relative

differences between the baseline benchmarks and the current results. The maximum
divergence is scaled by the maximum vorticity from the baseline benchmark. We do this
to make the number dimensionless by scaling it against a quantity which is not going to
zero as the grids are refined.

7



Sum/Integral 32x32x48 64x64x96 96x96x144
Quantity serial 32 processors 64 processors

Max(Vorticity) 1.1435e-15 1.1773e-11 2.9133e-12
Integral(Kinetic Energy) 7.6126e-15 1.7124e-09 2.9375e-10
Max Divergence(u) * 2.2087e-14 3.3646e-07 4.6150e-10

Table 9: Relative Differences Between Baseline and Current Results with maxboxsize=32

Sum/Integral 32x32x48 64x64x96 96x96x144
Quantity serial 32 processors 64 processors

Max(Vorticity) 1.5248e-10 4.5946e-10 3.2275e-09
Integral(Kinetic Energy) 3.3393e-07 2.1788e-08 5.3447e-07
Max Divergence(u) * 1.7938e-07 3.8402e-07 2.0073e-06

Table 10: Relative Differences Between Baseline and Current Results with
maxboxsize=48

8


